Page 9 - 2025年7月防腐蚀专辑
P. 9
宝等:无溶剂氟化聚丙烯酸酯/环氧树脂复合涂层的制备及其防腐性能
从表 2 可以看出,未经改性的纯环氧树脂涂层易 [ 6 ] SHI X,NGUYEN T A,SUO Z,et al. Effect of nanoparticles
被酸性溶液腐蚀,其表面会产生变化,加入氟化聚丙 on the anticorrosion and mechanical properties of epoxy
烯酸酯能提升复合涂层的耐酸性,经过 15 d 腐蚀介 coating[J]. Surface and Coatings Technology,2009,204(3):
质浸泡后表面仍没有发生变化,其原因是 PFEMA 在 237-245.
[ 7 ] TIITU M,TALO A,FORS N O ,et al. Aminic epoxy resin
复合涂层表面富集,形成致密的疏水层,阻挡酸性介
hardeners as reactive solvents for conjugated polymers:
质的浸入。酸性介质的腐蚀性比碱性介质和盐水介
polyaniline base/epoxy composites for anticorrosion coatings[J].
质强,所以复合涂层在酸性介质中的防腐性能区别
Polymer,2005,46(18):6855-6861.
尤为明显。
[ 8 ] WONNIE MA I A,SH A,RAMESH K,et al. Anticorrosion
3 结 语 properties of epoxy-nano chitosan nanocomposite coating[J].
Progress in Organic Coatings,2017,113:74-81.
[ 9 ] XIONG G,KANG P,ZHANG J,et al. Improved adhesion,
实验成功制备了含有环氧基团的氟化聚丙烯酸
heat resistance, anticorrosion properties of epoxy
酯,并通过物理共混氟化聚丙烯酸酯与环氧树脂制
resins/POSS/methyl phenyl silicone coatings[J]. Progress in
备了复合涂层。由于氟化聚丙烯酸酯表面能较低, Organic Coatings,2019,135:454-464.
在复合涂层中可以 移至涂层表面并富集,从而改 [10] ZULKIFLI F,YUSOF M S,ISA M,et al. Henna leaves
变环氧树脂的亲水性,使复合涂层表面具有疏水性, extract as a corrosion inhibitor in acrylic resin coating[J].
能够有效地阻挡腐蚀介质对涂层的接触、腐蚀。通 Progress in Organic Coatings,2017,105:310-319.
过水接触角、电化学工作站以及耐化学介质等测试, [11] 张晓伟 . 含环氧和长氟碳链的丙烯酸酯的制备及其改性
证明了添加 PFEMA能增强环氧树脂复合涂层的防腐 环氧树脂涂料性能研究[J]. 涂料工业,2016,46(12):16-
能力。由此说明氟化聚丙烯酸酯与其他树脂的复 21,24.
[12] YU Z,DI H,MA Y,et al. Fabrication of graphene oxide-
合,可形成阻碍腐蚀介质渗入的“疏水层”,是提高涂
alumina hybrids to reinforce the anti-corrosion performance
层防腐性能有效且简单的方法。
of composite epoxy coatings[J]. Applied Surface Science,
参考文献 2015,351:986-996.
[13] HARB S,TRENTIN A,DE SOUZA T,et al. Effective
[ 1 ] DEYAB M A,DE RICCARDIS A,MELE G. Novel
corrosion protection by eco-friendly self-healing PMMA-
epoxy/metal phthalocyanines nanocomposite coatings for cerium oxide coatings[J]. Chemical Engineering Journal,
corrosion protection of carbon steel[J]. Journal of Molecular
2020,383:123219.
Liquids,2016,220:513-517.
[14] KATHALEWAR M,SABNIS A,WAGHOO G. Effect of
[ 2 ] LI H,HUANG K,ZENG Q,et al. Residual strength
incorporation of surface treated zinc oxide on non-
assessment and residual life prediction of corroded
isocyanate polyurethane based nano-composite coatings[J].
a
pipelines: decade review[J]. Energies,2022,15(3):72-86.
Progress in Organic Coatings,2013,76(9):1215-1229.
[ 3 ] GAO M,TENG W,DU Z,et al. Source profiles and
[15] RAJKUMAR R,VEDHI C. A study of corrosion protection
emission factors of VOCs from solvent-based architectural
efficiency of silica nanoparticles acrylic coated on mild
coatings and their contributions to ozone and secondary
steel electrode[J]. Vacuum,2019,161:1-4.
organic aerosol formation in China[J]. Chemosphere,2021,
[16] FAN X,WANG X,YAN H,et al. Interpenetrating network
275:129815.
polymer(IPN) composite coating containing fluorinated
[ 4 ] CONRADI M,KOCIJAN A,KEK-MERL D,et al.
polyacrylic complex latex particles toward high wear and
Mechanical and anticorrosion properties of nanosilica-filled
corrosion resistance[J]. Colloids and Surfaces A:Physico
epoxy-resin composite coatings[J]. Applied Surface
chemical and Engineering Aspects,2022,639:128323.
Science,2014,292:432-437.
[17] SHI H,HE S,LIU W,et al. Waterborne epoxy resins
[ 5 ] KARGARFARD N,SIMON F,SCHLENSTEDT K,et al.
modified by reactive polyacrylate modifier with fluorinated
Self-stratifying powder coatings based on eco-friendly,
side chains[J]. Journal of Coatings Technology and
solvent-free epoxy/silicone technology for simultaneous
Research,2019,17(2):427-437.
corrosion and weather protection[J]. Progress in Organic
Coatings,2021,161:106443. 收稿日期 2023-12-06(修改稿)
06